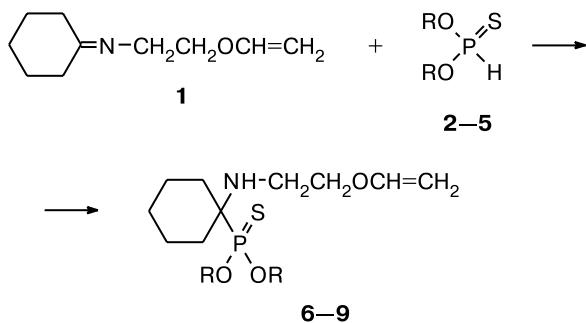


Synthesis of novel O,O' -dialkyl α -aminoalkylphosphonothioates

O. A. Aimakov,^a K. B. Erzhanov,^a and T. A. Mastryukova^{b*}

^aSh. Ualikhanov Kokshetau State University,
76 ul. Abaya, 475003 Kokshetau, Republic of Kazakhstan.
Fax: +7 (316 2) 25 5583


^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,
28 ul. Vavilova, 119991 Moscow, Russian Federation.
Fax: +7 (095) 135 5085. E-mail: mastr@ineos.ac.ru

O,O' -Dialkyl α -amino(cyclohexyl)phosphonothioates were synthesized by the reactions of O,O' -dialkyl phosphonothioates with [2-(*N*-cyclohexylideneamino)ethyl] vinyl ether.

Key words: O,O' -dialkyl phosphonothioates, O,O' -dialkyl α -amino(cyclohexyl)phosphonothioates, Schiff's bases.

Synthesis of aminoalkylphosphonates and -phosphinates has already been described in the literature.^{1–3} One of the key routes to alkyl aminoalkylphosphonates is the Kabachnik–Fields reaction.^{4,5}

Previously,⁶ we have reported the reactions of dialkyl phosphites and -phosphothioites with {2-[*N*-benzylidene- and *N*-(*p*-fluorobenzylidene)amino]ethyl} vinyl ether. Aimed at further developing the methods for the synthesis of organophosphorus compounds containing cyclic and heterocyclic radicals, which can possess practically useful biological activity, we studied reactions of easily accessible [2-(*N*-cyclohexylideneamino)ethyl] vinyl ether (**1**) (obtained from cyclohexanone and 2-aminoethyl vinyl ether⁷) with O,O' -dialkyl phosphonothioites **2–5**.

R = Me (**2, 6**), Et (**3, 7**), Prⁱ (**4, 8**), Buⁿ (**5, 9**)

The efficiency of the reaction depends significantly on temperature. The best results were obtained when the reactions were carried out at 47–50 °C for 45–50 min (the yields of the target products were 74–76%).

The structures of compounds **6–9** were confirmed by data from IR and ³¹P NMR spectroscopy and elemental analysis.

The IR spectra of compounds **6–9** show absorption bands at 1030–1060 (P—O—C_{alkyl}), 1610–1625 (C=C), 3235–3285 (NH), and 635–660 cm^{–1} (P=S). ³¹P NMR spectroscopic data are given in the Experimental.

Experimental

IR spectra were recorded on a UR-20 spectrometer (thin film). ³¹P NMR spectra were recorded on a Bruker WP-200SY instrument (81.01 MHz) in C₆H₆ with 85% H₃PO₄ as the external standard.

O,O' -Dialkyl phosphonothioites **2–5** were prepared according to the known procedures.^{8,9}

***O,O'*-Dialkyl {1-[2-(*vinyloxy*)ethylamino]cyclohexyl}phosphonothioates 6–9 (general procedure).** O,O' -Dialkyl phosphonothioites **2–5** (0.01 mol) were gradually added at ~20 °C to a solution of imine **1** (1.67 g, 0.01 mol) in benzene. The reaction mixture was heated at 47–50 °C for 50 min, the solvent was removed *in vacuo*, and the residue was chromatographed on SiO₂ (100–250 µm) in hexane–acetone (2 : 1).

Phosphonothioate 6. Yield 74.7%, n_D^{20} 1.5472. Found (%): C, 48.97; H, 8.03; N, 4.49; P, 10.37; S, 10.78. C₁₂H₂₄NO₃PS. Calculated (%): C, 49.13; H, 8.25; N, 4.77; P, 10.56; S, 10.93. ³¹P NMR, δ : 108.67 (s).

Phosphonothioate 7. Yield 73.3%, n_D^{20} 1.4995. Found (%): C, 52.13; H, 8.64; N, 4.14; P, 9.37; S, 9.78. C₁₄H₂₈NO₃PS. Calculated (%): C, 52.32; H, 8.78; N, 4.36; P, 9.64; S, 9.98. ³¹P NMR, δ : 104.17 (s).

Phosphonothioate 8. Yield 76.3%, n_D^{20} 1.4915. Found (%): C, 54.89; H, 9.05; N, 3.92; P, 8.69; S, 9.03. C₁₆H₃₂NO₃PS. Calculated (%): C, 54.99; H, 9.23; N, 4.01; P, 8.86; S, 9.17. ³¹P NMR, δ : 99.48 (s).

Phosphonothioate 9. Yield 75.8%, n_D^{20} 1.4870. Found (%): C, 57.13; H, 9.47; N, 3.59; P, 8.07; S, 8.23. C₁₈H₃₆NO₃PS. Calculated (%): C, 57.27; H, 9.61; N, 3.71; P, 8.20; S, 8.49. ³¹P NMR, δ : 104.69 (s).

This work was financially supported by the Foundation of Science and the Academy of Sciences of the

Republic of Kazakhstan (State Contract No. 257-99 FS) and by the Russian Foundation for Basic Research (Project No. 00-15-97386).

References

1. R. A. Cherkasov and V. I. Galkin, *Usp. Khim.*, 1998, **67**, 1834 [*Russ. Chem. Rev.*, 1998, **67** (Engl. Transl.)].
2. K. A. Petrov, V. A. Chauzov, and T. E. Erokhina, *Usp. Khim.*, 1974, **43**, 2045 [*Russ. Chem. Rev.*, 1974, **43** (Engl. Transl.)].
3. E. E. Nifant'ev, *Usp. Khim.*, 1978, **47**, 1565 [*Russ. Chem. Rev.*, 1978, **47** (Engl. Transl.)].
4. M. I. Kabachnik and T. Ya. Medved', *Dokl. Akad. Nauk SSSR*, 1952, **83**, 689 [*Dokl. Chem.*, 1952 (Engl. Transl.)].
5. E. K. Fields, *J. Am. Chem. Soc.*, 1952, **74**, 1528.
6. O. A. Aimakov, K. B. Erzhanov, and T. A. Mastryukova, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 1815 [*Russ. Chem. Bull.*, 1999, **48**, 1792 (Engl. Transl.)].
7. M. F. Shostakovskii, B. U. Minbaev, M. N. Mukhametzhanov, and O. A. Aimakov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1979, 223 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1979, **28** (Engl. Transl.)].
8. N. G. Zabirov, R. A. Cherkasov, and A. N. Pudovik, *Zh. Obshch. Khim.*, 1986, **56**, 1189 [*J. Gen. Chem. USSR*, 1986, **56** (Engl. Transl.)].
9. S. Scheibyl, B. S. Pedersen, and S. O. Lawesson, *Bull. Soc. Chim. Belg.*, 1978, **87**, 229.

Received January 31, 2002;
in revised form October 14, 2002